sgr: A Package for Simulating Conditional Fake Ordinal Data
نویسنده
چکیده
Many self-report measures of attitudes, beliefs, personality, and pathology include items that can be easily manipulated by respondents. For example, an individual may deliberately attempt to manipulate or distort responses to simulate grossly exaggerated physical or psychological symptoms in order to reach specific goals such as, for example, obtaining financial compensation, avoiding being charged with a crime, avoiding military duty, or obtaining drugs. This article introduces the package sgr that can be used to perform fake data analysis according to the sample generation by replacement approach. The package includes functions for making simple inferences about discrete/ordinal fake data. The package allows to quantify uncertainty in inferences based on possible fake data as well as to study the implications of fake data for empirical results.
منابع مشابه
Simulating from graphical models for ordinal categorical data
Multivariate ordinal categorical data is encountered in many fields of research. For analysis and data reduction the conditional independence properties of these data are studied in graphical models. However, to simulate multivariate ordinal data with a specific conditional independence structure, for use in simulation studies or computer intensive methods of inference, is non-trivial. We prese...
متن کاملThe R Package MAMS for Designing Multi-Arm Multi-Stage Clinical Trials
In the early stages of drug development there is often uncertainty about the most promising among a set of different treatments, different doses of the same treatment, or combinations of treatments. Multi-arm multi-stage (MAMS) clinical studies provide an efficient solution to determine which intervention is most promising. In this paper we discuss the R package MAMS that allows designing such ...
متن کاملctree: Conditional Inference Trees
This vignette describes the new reimplementation of conditional inference trees (CTree) in the R package partykit. CTree is a non-parametric class of regression trees embedding tree-structured regression models into a well defined theory of conditional inference procedures. It is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariat...
متن کاملEmpirical Scenarios of Fake Data Analysis: The Sample Generation by Replacement (SGR) Approach
Many self-report measures of attitudes, beliefs, personality, and pathology include items whose responses can be easily manipulated or distorted, as an example in order to give a positive impression to others, to obtain financial compensation, to avoid being charged with a crime, to get a job, or else. This fact confronts both researchers and practitioners with the crucial problem of biases yie...
متن کاملparty: A Laboratory for Recursive Partytioning
The party package (Hothorn, Hornik, and Zeileis 2006) aims at providing a recursive part(y)itioning laboratory assembling various highand low-level tools for building tree-based regression and classification models. This includes conditional inference trees (ctree), conditional inference forests (cforest) and parametric model trees (mob). At the core of the package is ctree, an implementation o...
متن کامل